

Daily Tutorial Sheet-4

Level-1

46.(D) Et
$$-$$
 O $-$ Me $\xrightarrow{\text{HI}}$ EtI $-$ MeI $\xrightarrow{\text{(X)}}$ EtOH $\xrightarrow{\text{NaOH}}$ EtOH $\xrightarrow{\text{NaOH}}$ CH₃ \downarrow yellow ppt.

47.(D)
$$Me_3C - O - Me \xrightarrow{HI} Me_3C \xrightarrow{C} - Me \xrightarrow{S_N1} MeOH + Me_3C^+ \xrightarrow{I^-} Me_3C - I$$

48.(C) Here it is base catalysed ring opening. So watch for steric factors.

- **49.(C)** In Oxy-mercuration-Demercuration, use of alcohol or phenol instead of H₂O with THF produces corresponding ether. In (A), PhO⁻ will do elimination as substrate is 3° BuCl.
- 50.(B) (I) will give E2 product as the substrate is 2° RX. (II) will give $S_N 2$ product since substrate has no β -H and it is 1° benzyl chloride.


51.(C)
$$CH_2 - CH - CH_2 \xrightarrow{KHSO_4} H_2C = CHCHO$$
 (Remember it as fact) OH OH OH

52.(A) OH OH OH Cl Cl Cl
$$CH_2 - CH - CH_2 \xrightarrow{PCl_5} CH_2 - CH - CH_2$$

Br Br HO OH
$$\frac{Na^{+}H^{-}}{H^{-}as \ base}$$
 $\frac{Na^{-}H^{-}}{Na\bar{O}}$ $\frac{Br \ Br}{O}$ (Dioxane)

Now bond between benzene ring and oxygen cannot be broken due to partial double bond character (+M) effect of OMe) so phenol is one of the product in cleavage of aromatic ether.

56.(B)
$$CH_3CH \xrightarrow{OH} CH_3 \xrightarrow{HIO_4} CH_3CHO + O = C \xrightarrow{CH_3} CH_3$$

57.(ABCD) (A)
$$CH_2OH \xrightarrow{HIO_4} 2HCHO$$
 (True) CH_2OH

(B)
$$\operatorname{RCH}_2\operatorname{OH} \xrightarrow{\operatorname{Cr}_2\operatorname{O}_7^{2-}/\operatorname{H}^+} \operatorname{orange} \xrightarrow{\operatorname{pren}} \operatorname{Cr}^{3+} + \operatorname{RCOOH}$$
 (True)

(C)
$$Me - C - OH \xrightarrow{Cu} Me Me C = CH_2$$

(True)

(D) CH₃OH: Methyl alcohol is called as wood spirit and also called as carbinol (True)

58.(AC)
$$H_3C$$
— CH — CH — CH_3 — C

Note: B could have been compound given in option D (but it requires 2 mol of HIO_4 for product)

59.(D) A, C give ketones and B will give alcohol.